Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage.

نویسندگان

  • Nikole T Greeson
  • Roopsha Sengupta
  • Ahmad R Arida
  • Thomas Jenuwein
  • Steven L Sanders
چکیده

Histone lysine methylation is an important chromatin modification that can be catalyzed to a mono-, di-, or tri-methyl state. An ongoing challenge is to decipher how these different methyllysine histone marks can mediate distinct aspects of chromatin function. The fission yeast checkpoint protein Crb2 is rapidly targeted to sites of DNA damage after genomic insult, and this recruitment requires methylation of histone H4 lysine 20 (H4K20). Here we show that the tandem tudor domains of Crb2 preferentially bind the di-methylated H4K20 residue. Loss of this interaction by disrupting either the tudor-binding motif or the H4K20 methylating enzyme Set9/Kmt5 ablates Crb2 localization to double-strand breaks and impairs checkpoint function. Further we show that dimethylation, but not tri-methylation, of H4K20 is required for Crb2 localization, checkpoint function, and cell survival after DNA damage. These results argue that the di-methyl H4K20 modification serves as a binding target that directs Crb2 to sites of genomic lesions and defines an important genome integrity pathway mediated by a specific methyl-lysine histone mark.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylation of Histone H4 Lysine 20 Controls Recruitment of Crb2 to Sites of DNA Damage

Histone lysine methylation is a key regulator of gene expression and heterochromatin function, but little is known as to how this modification impinges on other chromatin activities. Here we demonstrate that a previously uncharacterized SET domain protein, Set9, is responsible for H4-K20 methylation in the fission yeast Schizosaccharomyces pombe. Surprisingly, H4-K20 methylation does not have a...

متن کامل

Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein.

Methylation of histone H4 lysine 20 (H4K20me) is essential for recruiting checkpoint proteins 53BP1/Crb2 to DNA lesions and subsequent activation of a DNA-damage checkpoint. In fission yeast, Set9 (spKMT5) catalyzes mono-, di-, and trimethylation of H4K20. However, the mechanisms that regulate Set9 function are poorly understood. Here, we identified a PWWP domain protein Pdp1 as a Set9-associat...

متن کامل

Cooperative control of Crb2 by ATM family and Cdc2 kinases is essential for the DNA damage checkpoint in fission yeast.

The cellular responses to double-stranded breaks (DSBs) typically involve the extensive accumulation of checkpoint proteins in chromatin surrounding the damaged DNA. One well-characterized example involves the checkpoint protein Crb2 in the fission yeast Schizosaccharomyces pombe. The accumulation of Crb2 at DSBs requires the C-terminal phosphorylation of histone H2A (known as gamma-H2A) by ATM...

متن کامل

Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks.

Cellular responses to DNA damage involve the relocalization of checkpoint proteins to DNA double-strand breaks (DSBs). The fission yeast checkpoint mediator protein Crb2, a homolog of mammalian 53BP1, forms ionizing radiation-induced nuclear foci (IRIF). The IRIF formation by Crb2 requires histone H2A C-terminal phosphorylation and H4-K20 methylation. However, the relevance of Crb2 relocalizati...

متن کامل

The checkpoint Saccharomyces cerevisiae Rad9 protein contains a tandem tudor domain that recognizes DNA

DNA damage checkpoints are signal transduction pathways that are activated after genotoxic insults to protect genomic integrity. At the site of DNA damage, 'mediator' proteins are in charge of recruiting 'signal transducers' to molecules 'sensing' the damage. Budding yeast Rad9, fission yeast Crb2 and metazoan 53BP1 are presented as mediators involved in the activation of checkpoint kinases. He...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 48  شماره 

صفحات  -

تاریخ انتشار 2008